Las computadoras...¿son superhéroes?

Lic. Federico Pousa Departamento de Computación FCEyN-UBA

¿Qué es un Problema Combinatorio?

 Es un problema en que deben contarse una cierta cantidad de posibilidades, casos, configuraciones, conjuntos, etc.

• El resultado es un número entero.

Ejemplo de Problema Combinatorio

¿De cuántas formas diferentes pueden sentarse n alumnos en un aula de n asientos?

Respuesta:

Las podemos recorrer de

n! = nx(n-1)x(n-2)x...x5x4x3x2x1

maneras distintas

3.628.800

20!

2.432.902.008.176.640.000

30!

265.252.859.812.191.058.636.308.480.000.000

10!

3.628.800

20!

2.432.902.008.176.640.000

30!

265.252.859.812.191.058.636.308.480.000.000

40!

815.915.283.247.897.734.345.611.269.596.115.894.272.000.000.000

10!

3.628.800

20!

2.432.902.008.176.640.000

30!

265.252.859.812.191.058.636.308.480.000.000

40!

815.915.283.247.897.734.345.611.269.596.115.894.272.000.000.000

100!

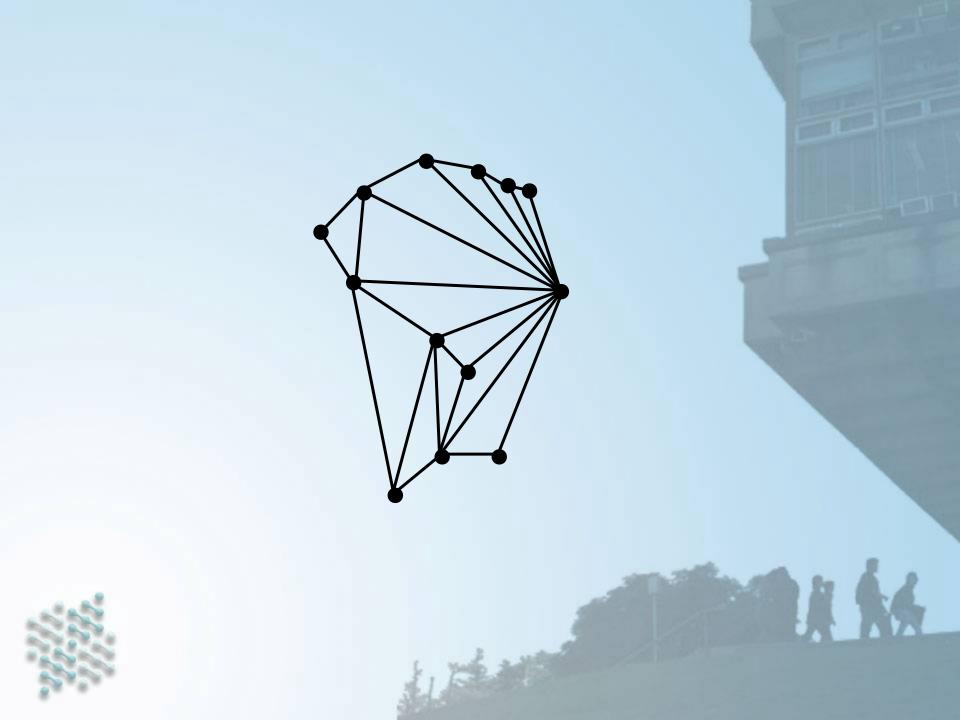
933262154439441526816992388562667004907159682643816214685 9296389521759999322991560894146397615651828625369792082722375825118521091686400000000000000000000000 ¿De cuántas formas diferentes pueden cumplir años n personas, si queremos que todos cumplan un día diferente?

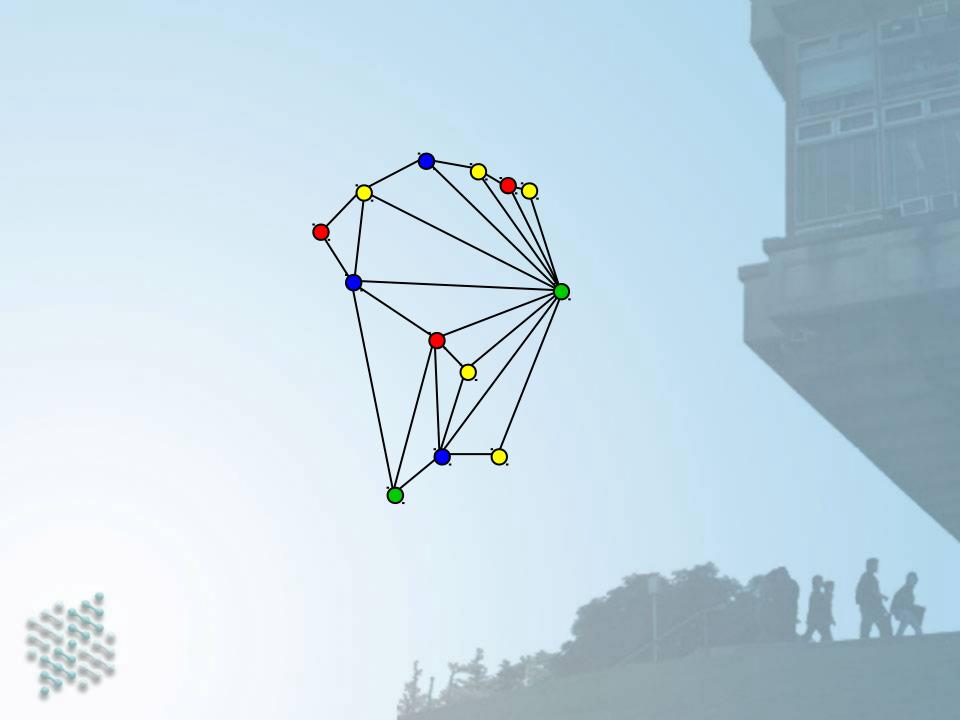
Si consideramos 365 días, entonces es 365x364x363x...(365-n+1)

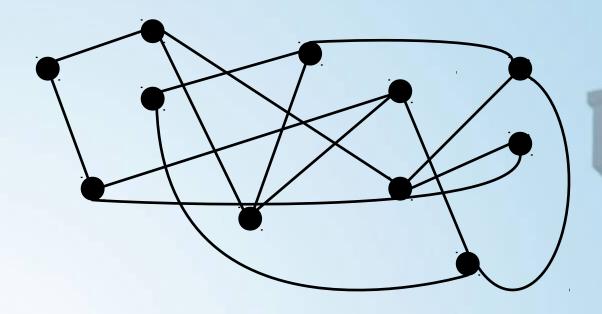
¿Y si pueden cumplir cualquier día?

Entonces es 365x365x365x...x365=365^n

Si hacemos las cuentas, podemos ver que con solo 23 personas hay más posibilidades de que dos personas cumplan el mismo día que de que no suceda


¿Qué es un Problema de Optimización Combinatoria?


- Es un problema en el cual, de un conjunto de objetos valuados con alguna función, se busca el objeto con "mejor" valor.
- Puede ser el objeto de máximo valor, de mínimo valor o alguna otra alternativa.


¿Qué pasa si quiero usar la mínima cantidad de colores?

Alrededor de 1850, se conjeturó que 4 colores alcanzaban para pintar un mapa.

1890: 5 colores

1976: 4 colores

نy en casos generales...? Es un problema DIFICIL de resolver

Hay ejemplos de tamaño 250, 500 y 1000 para los que aún no se conoce la cantidad mínima necesaria.

¿Cómo atarse los cordones?

Hay 43200 maneras diferentes (6 ojales de cada lado)

¿Cómo se Resuelve un Problema de Optimización Combinatoria?

Fuerza Bruta

Consiste en listar todos los casos y para cada uno calcular su costo, identificando de este modo el caso de costo más conveniente.

Hoy contamos con las computadoras, capaces de hacer millones de operaciones aritméticas y lógicas por segundo.

Podríamos pensar que como son muy eficientes y rápidas no tendremos problemas en resolver los problemas más grandes que se nos presenten.

¿Será cierto?

Problema del Viajante

Un viajante debe recorrer cierta cantidad de ciudades y volver finalmente a la ciudad donde vive.

¿Cuál es el mejor recorrido?

- ✓ El más corto.
- ✓ El más rápido.

Supongamos que quiero resolver el problema del viajante de comercio para 20 ciudades

¿Cuánto creen que tardaremos en evaluar todos los posibles recorridos?

iArriesguen!

1 minuto, 1 hora, 1 día, 1 año, 1 siglo o más?

Tenemos una computadora que realiza un billón de evaluaciones por segundo (1.000.000.000.000 x seg)

Hay que evaluar **20!=2432902008176640000** posibilidades

Tenemos una computadora que realiza un billón de evaluaciones por segundo (1.000.000.000.000 x seg)

Hay que evaluar **20!=2432902008176640000** posibilidades

entonces tardaríamos...

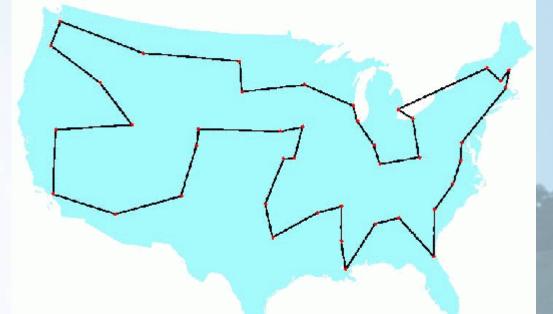
2.432.902 seg

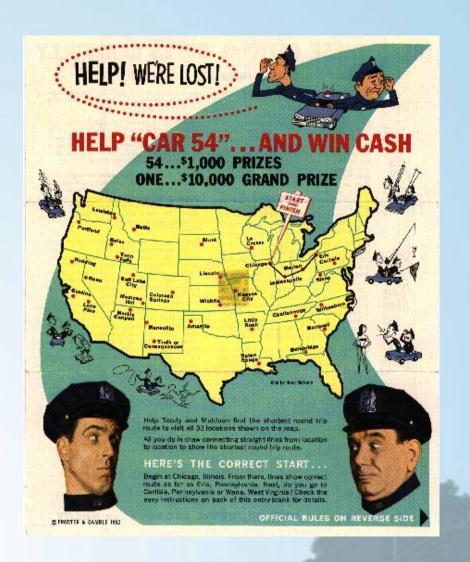
= 675 horas = 28 dias

Tenemos una computadora que realiza un billón de evaluaciones por segundo (1.000.000.000.000 x seg)

Hay que evaluar
30!
=265252859812191058636308480000000
posibilidades

Tenemos una computadora que realiza un billón de evaluaciones por segundo (1.000.000.000.000 x seg)

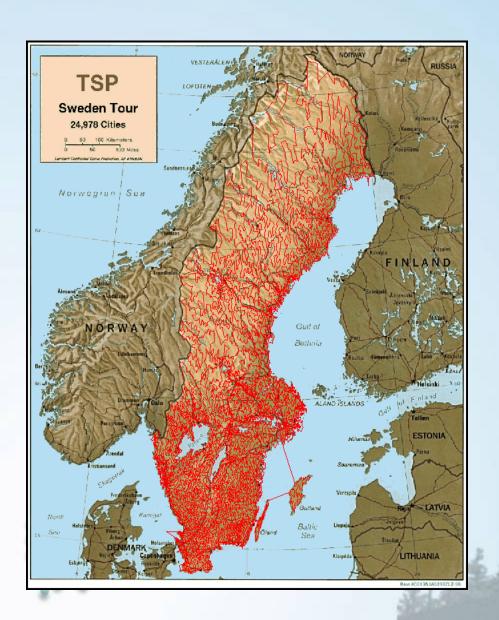

Hay que evaluar
30!
=265252859812191058636308480000000
posibilidades


Eso resultaría en 8.411.113.007 siglos

Más Allá de la Fuerza Bruta

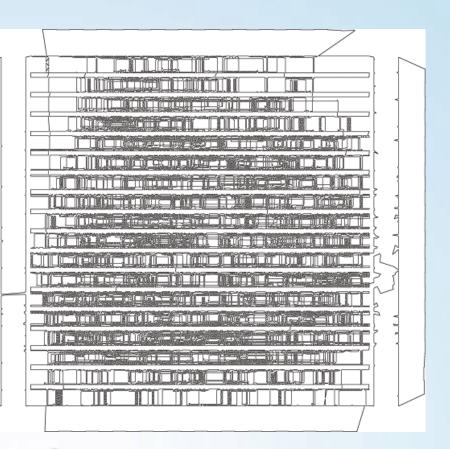
En 1954 Dantzig, Fulkerson y Johnson resolvieron un caso de 49 ciudades.

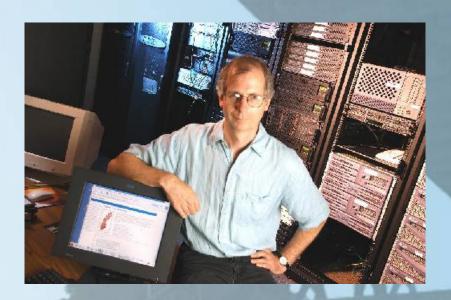
DF&J estaban seguros de que la solución era la mejor del conjunto de 49! soluciones posibles.



(33 ciudades -1962)

Solución Record de 15.112 Ciudades (2001)


- Resuelta en una red de 110 máquinas en las universidades de Rice y Princeton.
- Tiempo total de cómputo de 22.6 años de una Compaq EV6 Alpha de 500 MHz
- Longitud total de aproximadamente 66.000 Km (Un poco más de una vuelta y media a la tierra por el ecuador).



Solución record 24978 ciudades 2004

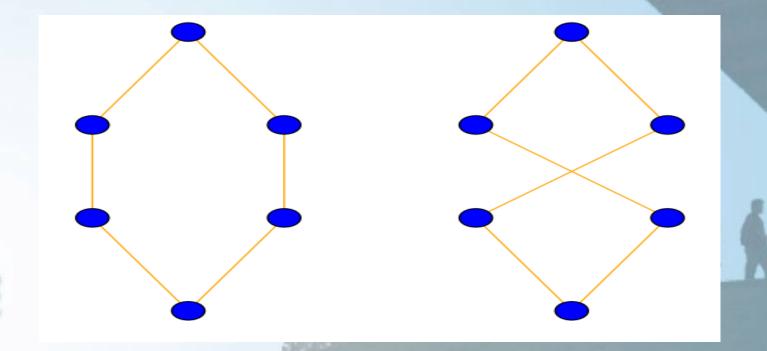
91.9 CPU años Intel Xeon 2.8 GHz

Solución record 85900 ciudades 2006

96 Nodos, 2.8 GHz y 2 GBytes.

Problema abierto: 1.904.711 ciudades

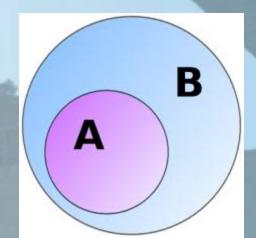
H. Nguyen, I. Yoshihara, K. Yamamori y M. Yasunaga 7.518.425.642 Junio 2003


7.517.285.610m 7.515.971.188m 7.515.947.511m 7.515.786.987m 7.515.778.188m 7.515.772.212m Septiembre 2003 Mayo 2007 Noviembre 2008 Abril 2011 Octubre 2011 Mayo 2013

Porcentaje: 0.0474%

¿Cómo se resuelven?

 Por un lado, hay que encontrar una buena solución. Por ejemplo, podemos comenzar con una solución cualquiera e ir mejorandola.

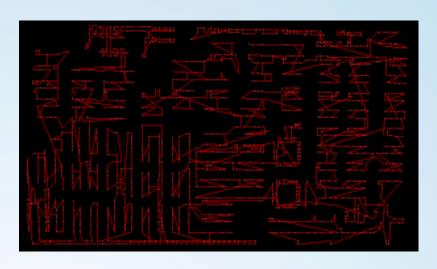


¿Cómo se resuelven?

 Por otro lado, hay que mostrar que no hay otra solución mejor. Esto se puede hacer resolviendo problemas más fáciles que incluyan al que queremos resolver.

- A: Soluciones de nuestro problema
- B: Soluciones de un problema

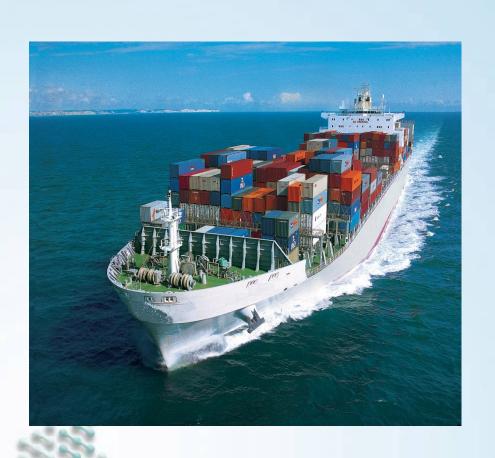
más simple

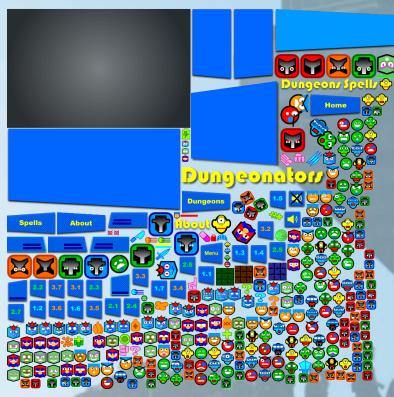


¿Para qué sirven?

Modelan algunos problemas de la realidad que tienen importantes aplicaciones prácticas.

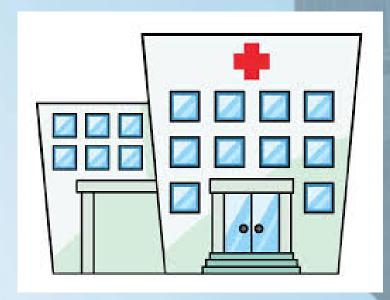
Viajante de comercio




Rutas para vehículos

Distribución en contenedores

Asignaciones



Mucho más

Problemas Fáciles y Difíciles

✓ Problema fácil: Verificar que recorro todas las ciudades.

✓ Problema difícil: Verificar que es el camino mas corto.

Resolución Satisfactoria

¿Cuándo se considera que la computadora resuelve satisfactoriamente un problema?

Cuando el tiempo que tarda en encontrar la solución es "razonable".

	10	20	30	40	50	60
n	0.00001"	0.00002"	0.00003"	0.00004"	0.00005"	0.00006"
n²	0.0001"	0.0004"	0.0009"	0.0016"	0.0025"	0.0036"
n³	0.001"	0.008"	0.027"	0.064"	0.125"	0.216"

	10	20	30	40	50	60
n	0.00001"	0.00002"	0.00003"	0.00004"	0.00005"	0.00006"
n²	0.0001"	0.0004"	0.0009"	0.0016"	0.0025"	0.0036"
n³	0.001"	0.008"	0.027"	0.064"	0.125"	0.216"
n⁵	0.1"	3.2"	24.3"	1.7m	5.2m	13.0m

	10	20	30	40	50	60
n	0.00001"	0.00002"	0.00003"	0.00004"	0.00005"	0.00006"
n²	0.0001"	0.0004"	0.0009"	0.0016"	0.0025"	0.0036"
n³	0.001"	0.008"	0.027"	0.064"	0.125"	0.216"
n⁵	0.1"	3.2"	24.3"	1.7m	5.2m	13.0m
2 ⁿ	0.001"	1.0"	17.9m	12.7 d	35.5 a	366 c

	10	20	30	40	50	60
n	0.00001"	0.00002"	0.00003"	0.00004"	0.00005"	0.00006"
n²	0.0001"	0.0004"	0.0009"	0.0016"	0.0025"	0.0036"
n³	0.001"	0.008"	0.027"	0.064"	0.125"	0.216"
n ⁵	0.1"	3.2"	24.3"	1.7m	5.2m	13.0m
2 ⁿ	0.001"	1.0"	17.9m	12.7d	35.5 a	366 c
3 ⁿ	0.059"	58m	6.5 a	3855 c	2x108 c	1.3x10 ¹³ C

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁
n²	N_2	10 N ₂	31.6 N ₂

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁
n²	N ₂	10 N ₂	31.6 N ₂
n³	N_3	4.64 N ₃	10 N ₃

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁
n²	N ₂	10 N ₂	31.6 N ₂
n³	N_3	4.64 N ₃	10 N ₃
n ⁵	N_4	2.5 N ₄	3.98 N ₄

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁
n²	N ₂	10 N ₂	31.6 N ₂
n³	N_3	4.64 N ₃	10 N ₃
n ⁵	N ₄	2.5 N ₄	3.98 N ₄
2 ⁿ	N ₅	N ₅ + 6.64	N ₅ + 9.97

	Pc actual	100 veces más rápida	1000 veces más rápida
n	N_1	100 N ₁	1000 N ₁
n²	N ₂	10 N ₂	31.6 N ₂
n³	N_3	4.64 N ₃	10 N ₃
n ⁵	N ₄	2.5 N ₄	3.98 N ₄
2 ⁿ	N ₅	N ₅ + 6.64	N ₅ + 9.97
3 n	N ₆	N ₆ + 4.19	N ₆ + 6.29

Hay problemas para los cuales las computadoras encuentran la solución en tiempo "razonable".

Hay problemas para los cuales TODAVÍA las computadoras no han podido encontrar

la solución en tiempo "razonable".

¿POR QUÉ?

NO LO SABEMOS...

¿CARACTERÍSTICAS DEL PROBLEMA?

¿LIMITACIÓN HUMANA?

SE BUSCA QUIEN RESUELVA ESTE DESAFÍO